Mammalian Target of Rapamycin (mTOR) Tagging Promotes Dendritic Branch Variability through the Capture of Ca2+/Calmodulin-dependent Protein Kinase II α (CaMKIIα) mRNAs by the RNA-binding Protein HuD.

نویسندگان

  • Natasha M Sosanya
  • Luisa P Cacheaux
  • Emily R Workman
  • Farr Niere
  • Nora I Perrone-Bizzozero
  • Kimberly F Raab-Graham
چکیده

The fate of a memory, whether stored or forgotten, is determined by the ability of an active or tagged synapse to undergo changes in synaptic efficacy requiring protein synthesis of plasticity-related proteins. A synapse can be tagged, but without the "capture" of plasticity-related proteins, it will not undergo long lasting forms of plasticity (synaptic tagging and capture hypothesis). What the "tag" is and how plasticity-related proteins are captured at tagged synapses are unknown. Ca(2+)/calmodulin-dependent protein kinase II α (CaMKIIα) is critical in learning and memory and is synthesized locally in neuronal dendrites. The mechanistic (mammalian) target of rapamycin (mTOR) is a protein kinase that increases CaMKIIα protein expression; however, the mechanism and site of dendritic expression are unknown. Herein, we show that mTOR activity mediates the branch-specific expression of CaMKIIα, favoring one secondary, daughter branch over the other in a single neuron. mTOR inhibition decreased the dendritic levels of CaMKIIα protein and mRNA by shortening its poly(A) tail. Overexpression of the RNA-stabilizing protein HuD increased CaMKIIα protein levels and preserved its selective expression in one daughter branch over the other when mTOR was inhibited. Unexpectedly, deleting the third RNA recognition motif of HuD, the domain that binds the poly(A) tail, eliminated the branch-specific expression of CaMKIIα when mTOR was active. These results provide a model for one molecular mechanism that may underlie the synaptic tagging and capture hypothesis where mTOR is the tag, preventing deadenylation of CaMKIIα mRNA, whereas HuD captures and promotes its expression in a branch-specific manner.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mammalian Target of Rapamycin (mTOR) Tagging Promotes Dendritic Branch Variability through the Capture of Ca /Cal- modulin-dependent Protein Kinase II (CaMKII ) mRNAs by the RNA-binding Protein HuD*

Natasha M. Sosanya, Luisa P. Cacheaux, Emily R. Workman , Farr Niere, Nora I. Perrone-Bizzozero**, and Kimberly F. Raab-Graham 3 From the Center for Learning and Memory, Department of Neuroscience, Institute for Cell Biology, and Institute for Neuroscience, University of Texas, Austin, Texas 78712, United States Army Institute of Surgical Research, Joint Base San Antonio-Fort Sam, Houston, Texa...

متن کامل

THE EFFECTS OF 4 WEEKS HIGH INTENSITY INTERVAL TRAINING ON MAMMALIAN RAPAMYCIN TARGET PROTEIN (MTOR) AND STEROL TRANSCRIPTION FACTOR REGULATORY PROTEIN-1 (SREBP1) PROTEINS CONTENT IN DIABETICS OBESE RATS ADIPOSE TISSUE

Background: Obesity and type 2 diabetes can impair the function of important cellular pathways. Activation of the mTOR pathway results in regulation of the SREBP1 protein for metabolism and regulation of adipose tissue. The aim of this study was to investigate the effect of 4 weeks of high intensity interval training on the content of mTOR and SREBP1 in adipose tissue of type 2 diabetic rats. ...

متن کامل

Effect of chronic morphine administration on Ca2+/Calmodulin-Dependent protein kinase IIα activity in rat locus coeruleus and its possible role in morphine dependency

Introduction: The aim of this study was to assess the effect of Ca2+/calmodulin-dependent kinase IIα (CaMKIIα) inhibitor (KN-93) injection into the locus coeruleus (LC) on the modulation of withdrawal signs. We also sought to study the effect of chronic morphine administration on CaMKIIα activity in the rat LC. Methods: The research was based on behavioral and molecular studies. In the behav...

متن کامل

Gene Expression Profile of Calcium/Calmodulin-Dependent Protein Kinase IIα in the Rat Hippocampus during Morphine Withdrawal

Introduction: Calcium/calmodulin-dependent protein kinase II (CaMKII) is highly expressed in the hippocampus, which has a pivotal role in reward-related memories and morphine dependence. Methods: In the present study, morphine tolerance was induced in male Wistar rats by 7 days repeated morphine injections once daily, and then gene expression profile of α-isoform of CaMKII (CaMKIIα) in the hipp...

متن کامل

THE EFFECT OF ENDURANCE TRAINING ON PROTEIN KINASE-B AND MECHANICAL TARGET OF RAPAMYCIN IN THE LEFT VENTRICLE OF THE HEART OF DIABETIC RATS INDUCED BY STREPTOZOTOCIN AND NICOTINAMIDE

Background: The pathway of insulin messengers is so important that diabetes can lead to disruption of this pathway. However, the aim of this study was to investigate the effect of 8 weeks of endurance training on protein Kinase-B (PKB or AKT) and mechanical target of rapamycin (mTOR) in the left ventricle of the heart of diabetic rats induced by streptozotocin and nicotinamide. Methods: In thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 290 26  شماره 

صفحات  -

تاریخ انتشار 2015